Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe

نویسندگان

  • Xiaohong Jiang
  • Guoyun Wu
  • Jingfang Zhou
  • Shujie Wang
  • Ampere A Tseng
  • Zuliang Du
چکیده

Atomic force microscope (AFM) equipped with diamond-like carbon (DLC)-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the mechanical integrity of silicon and diamond-like carbon coated silicon atomic force microscope probes

The wear of atomic force microscope (AFM) tips is a critical issue in the performance of probe-based metrology and nanomanufacturing processes. In this work, diamond-like carbon (DLC) was coated on Si AFM tips using a plasma ion implantation and deposition process. The mechanical integrity of these DLC-coated tips was compared to that of uncoated silicon tips through systematic nanoscale wear t...

متن کامل

Anti-sticking behavior of DLC-coated silicon micro-molds

Pure carbon(C), nitrogen(N) and titanium(Ti) doped diamond-like carbon (DLC) coatings were deposited on silicon (Si) micro-molds by dc magnetron sputtering deposition to improve the tribological performance of the micro-molds. The coated and uncoated Si molds were used in injection molding for the fabrication of secondary metal-molds, which were used for the replication of micro-fluidic devices...

متن کامل

Replication performance of Si-N-DLC-coated Si micro-molds

Micro-hot-embossing is an emerging technology with great potential to form microand nano-scale patterns into polymers with high throughput and low cost. Despite its rapid progress, there are still challenges when this technology is employed, as demolding stress is usually very high due to large friction and adhesive forces induced during the process. Surface forces are dominating parameters in ...

متن کامل

Nanofabrication of Diamond-like Carbon Templates for Nanoimprint Lithography

Diamond like carbon (DLC) films were deposited on Si and then patterned to form 40 nm features as nanoimprint templates. A plasma enhanced chemical vapor deposition (PECVD) system with CH4 precursor was used to deposit DLC films on Si and quartz substrates. These films were then characterized using Raman spectroscopy, atomic force microscopy (AFM), nanoindentation, and contact angle measurement...

متن کامل

Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone.

Poly aryl-ether-ether-ketone (PEEK) is an alternative to metal alloys in orthopedic applications. Although the polymer provides many significant advantages such as excellent mechanical properties and non-toxicity, it suffers from insufficient elasticity and biocompatibility. Since the elastic modulus of diamond-like carbon (DLC) is closer to that of cortical bone than PEEK, the DLC/PEEK combina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011